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Nomenclat ure 

A complex pressure amplitude 
c wave speed 
e error 

/ cyclical frequency 

I pressure intensity 
k wave number 

P total pressure 

Po ambient pressure 

p' acoustic pressure 

P complex pressure 

<lv internal thermal energy generation 

Q measured quantity 
J jacobian 
r linear position coordinate 
s surface of the transducer 

t time 
u total velocity 

u0 ambient velocity 

u' acoustic velocity 

vs surface velocity of radiator 
a pressure attenuation coefficient 

ß pressure attenuation slope coefficient 

7 model parameter 

P total density 

Po ambient density 

p' acoustic density 
X position 

Z acoustic impedance 
Ks compressibility (inverse of bulk modulus) 

P absorption coefficient 
■K Pi 
$ cost function 
* velocity potential 

OJ radial frequency 



1    Introduction 

Hyperthermia has been shown to be an efficacious adjuvant therapy in the treatment of recurrent 
breast cancer [1, 2] and recent clinical trials continue to demonstrate the benefit of adjuvant hyper- 
thermia in the radiotherapy treatment of recurrent breast cancer [3]. These positive results have 
been realized through a variety of clinical hyperthermia heating devices, including radiative electro- 

magnetic applicators [4, 5] and ultrasound based devices [6]. Moreover, these positive results have 
been realized in spite of the fact that the clinically achieved thermal doses were below those though 
to provide direct thermal cytotoxicity and thermal radio-sensitization [7, 8]. These low thermal 
doses are attributed to two factors [9]: 1) patient pain that limits the treatment, and 2) technical 
limitations in the ability of the device to raise the tumor temperature to the therapeutic level. 
The work in this research directly addresses the second issue of technical limitation and indirectly 
addresses the issue of patient pain. 

1.1     Goals 

A clinical system is being constructed to use inverse techniques to estimate the absorbed power 
field in the breast and chest wall during ultrasound hyperthermia. The system uses a B-mode 
ultrasound imager to construct a geometric model based upon each patient's anatomy and to 
initially measure the ultrasound attenuation coefficient at selected areas within the tissue region. 
Ultrasound propagation from the transducer and into the breast is modeled with a hybrid of 
Green's function solutions used in the homogenous water region and a finite element solution of the 
acoustic wave equation in the inhomogeneous breast region. During the treatment, actual absorbed 
power will be measured at the thermocouple junctions within the tumor and normal tissue. These 
absorbed powers will be compared to the modeled absorbed powers at those locations and the 
ultrasound model will be updated to bring its estimate, which is of the entire ultrasound field, in 
line with the measured absorbed powers. This updating constitutes the "inverse problem." 

It is the goal of this research to provide improved numerical modeling of ultrasound propagation 
through breast tissue and the post-mastectomy chest wall for use in patient treatment planning 
of hyperthermia cancer treatments. The clinical hyperthermia situation is diagramed in figure 1. 
With this improved model the clinician can plan an ultrasound hyperthermia treatment so as to 
produce the required thermal dose while minimizing patient pain due to excessive temperature or 
ultrasound-tissue interactions. This improved planning will aid the clinicians in providing better 
hyperthermia treatments which will improve treatment response rates. This will be done by: 

1. developing a clinical data acquisition system to obtain patient anatomy, measure attenuation, 
and measure absorbed power 

2. developing improved models of ultrasound propagation through breast tissue 

3. integrating the measurement and modeling techniques into an inverse solution to obtain the 
"best" solution possible 
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Figure 1: Diagram of the clinical situation for a hyperthermia treatment of the breast or chest wall 
area. 



4. determining the sensitivity of outcomes to input parameters 

5. quantifying errors within the measurement and modeling techniques 



2    Experimental Methods 

All inverse techniques are based upon comparing the results of theoretical models to actual ex- 
perimental values. The model is updated so that its predictions match the measurements. The 
experimental platform is therefore an essential and key component of any inverse technique. The 
advantage of the inverse technique is that the model can predict the pressure field everywhere, 

while the measurements may be severely restricted, especially in a medical application. 

2.1     Data Acquisition 

Since this research is designed to be used in conjunction with a clinical system, all data acquisition 
must be compatible with the current hyperthermia system. Due to physical constraints imposed by 
the unit and the tumor treatment sites, this requirement limits data acquisition to B-mode ultra- 
sound images and an existing thermocouple based thermometry system. There are therefore two 
separate data acquisition systems available for the development of the proposed inverse technique. 
The first is an ultrasound imager used to obtain patient geometry and measure attenuation. The 
second is the thermocouple thermometry system which can be used to measure the absorbed power. 

2.1.1     Geometric Model Construction 

Figure 2 diagrams the ultrasound based data acquisition system which consists of a B-mode ultra- 
sound imager1 to acquire patient geometry. This image will serve as the diagnostic medical image 
that the geometric model will be based upon. 

The construction of the geometric model is the most labor intensive step in solving for the 
propagation of ultrasound through tissue. In this step, it is necessary to determine the exterior 
boundary, the boundary conditions, and the internal spatial distribution of material properties and 
enter these data into the computer for analysis. The most common technique in use today is to base 
the geometric model upon a standard diagnostic medical image such as CT or MM [10]. Regions 
of interest are then traced out over this image and the interior region is meshed for the appropriate 

numerical solution. 
In the first stage of this work only two-dimensional models will be constructed based upon 

a single image from the B-mode scanner. The imager is equipped with a software measurement 
package and a hard copy output device. The operator will capture the image of interest, determine 
regions of constant material properties, measure the dimensions of these regions, and print-out that 
image. 

Once the geometric information is obtained, a two dimensional unstructured mesh generator 2 

is used to mesh the domain with quadrilateral elements for a finite element analysis explained in 

section 3. 

'Scanner 250, Pie Medical USA 3535 Route 66, Neptune NJ 07753 
2The program FASTQ was obtained in the ACCESS package from Sandia National Laboratories, Albuquerque, 

New Mexico 857185-0441, attn: Organization 1503 
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Figure 2: Diagram of the B-mode ultrasound imager based clinical data acquisition system used to 
obtain patient geometry and measure attenuation for input into the inverse technique. 
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Figure 3: A single line of RF data obtained from the commercial B-mode imager. 

2.1.2     A-line Acquisition 

Previous researchers have reported on attenuation measurements with clinical ultrasound units 
[11, 12, 13, 14]. The attenuation measurements were usually used to assist in differential diagnosis 
of disease, for example breast cancer [15, 16], liver disease [17, 18], or degenerative plaque [19]. 

For this research the manufacturer has modified the B-mode imager to provide access to the 
radio-frequency signal from each A-line of the B-mode image. A specific A-line can be selected 
through a computer controlled A-line selection circuit 3. The radio frequency (RF) data from that 
A-line is then digitized 4 and stored in a 486 PC. Figure 3 shows an example of a single A-line 
of RF data. These data are used to measure the tissue attenuation coefficient as explained in 
section 2.2.1. 

3 Custom circuit manufactured by Mike Jolley at the University of Utah 
4Gage Applied Sciences Inc., Compuscope 250 
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Figure 4: Diagram of the clinical data acquisition system used to obtain on-line measurements of 
the absorbed power at the thermocouple locations. 

2.1.3     Temperature Acquisition 

Figure 4 diagrams the clinical treatment data acquisition system in place at the University of 
Utah's Department of Radiology, Division of Radiation Therapy to measure the tissue temperature 
from thermocouple probes. It consists of therapeutic ultrasound transducers for heating the tumor 
and invasive thermocouple probes that are measured through a 486 PC. This system will be 
used to obtain the time temperature histories needed to measure absorbed power as explained in 
section 2.2.2. 



2.2    Data Analysis 

2.2.1     Attenuation Estimation 

As an acoustic pressure wave propagates through a medium it loses a portion of its energy through 
the effects of absorption, reflection, and scattering. The cumulative effect of these phenomenon is 
referred to as attenuation. Detailed discussion of these phenomenon are discussed in [20, 21]. In 
practice only the attenuation coefficient, a, is usually sought and its influence upon the amplitude 

of the pressure distribution is given by 

\p\ = \p\x=0e-ax (1) 

A note needs to be made here regarding the definition of attenuation. The attenuation , a, as 
defined by equation 1 may be more precisely termed the pressure amplitude attenuation coefficient, 
ap. This is how attenuation is classically defined in textbooks [21, 22] and how it is used in 
appendix A. In the majority of studies referenced herein, however, attenuation has been defined as 

the intensity amplitude attenuation factor, a.{ [23] 

/ = I0e
aiX (2) 

Since the intesity is proportional to the square of the pressure amplitude, the two definitions are 

related by 
2ap = ai (3) 

This distinction is rarely drawn in the literature and in none of the work cited herein. It is important 
to keep the distinction correct when using values from the literature to calculate pressure fields. 
Additionally a is usually assumed to be linear function of frequency such that 

a = ßxf (4) 

As was demonstrated in the original proposal the relative importance of the various acoustic 
material properties in determining the absorbed power field in the tissue are: the attenuation 
coefficient ( O(1010) ), the tissue speed of sound (O(107)), and the tissue acoustical impedance 
(0(1)). It is therefore of great importance to obtain accurate attenuation estimates. 

Work on in vivo measurement of tissue attenuation using echo information has been reviewed 
in the literature [23]. focused on the liver [12, 24]. These studies show a large spread in attenuation 
coefficients between patients with values ranging from 0.214 to 0.849 dB/cm/MHz. This relatively 
large variablity amongst tissues highlights the need for individual measurements for each patient, 
even on each treatment day. Several methods have been proposed for measuring the attenuation 
from echo data with some methods accurate to within 1% in phantom studies [11]. They can be 
categorized as time domain and frequency domain methods. 

10 



Frequency Domain Methods The frequency domain methods utilize the fact that the energy 

in a wave is dissipated as it travels through a length of tissue, see equation 2, and measure the 
attenuation coefficient by means of the log spectral difference [25, 26, 17, 27, 15, 28, 29, 30, 31], or 
the shift in the center frequency of the sound pulse [14, 12, 32, 33, 34]. Other methods measure 
the decay rate with depth of the magnitude of the backscattered pressure at a discete frequency 
[18, 35, 36]. Still others have developed novel unique methods [37, 38]. Figure 5 shows the power 
spectral density for the A-line shown in figure 3. 

Time Domain Methods Time domain methods are not as popular as the frequency domain 
methods. They can be based upon measureing the amplitude loss of the signal [13] or novel 
techniques such as the difference ratio correction method [39]. 

Finally, Halpren [11] compared five of the above methods for estimating tissue attenuation using 
a 3.5 MHz Ultramark-9 unit. He reported that,".. .a combination of frequency and time domain 
methods was likely to provide more reliable estimates of attenuation ...." 

2.2.2     Acoustic Pressure Measurement 

There are currently four accepted methods [40] to measure the acoustic pressure field from an 

ultrasound transducer: 

Hydrophone Places a PVDF needle-like hydrophone in the CW field and measures absolute 
complex pressures 

Radiation Force The transducer sonicates an absorbing target and the resulting force is propor- 
tional to the total power 

Thermal Techniques Places a thermocouple probe embedded in an absorbing medium in the 
pulsed field and measures the magnitude of the pressure squared 

Optical Techniques Measures the ultrasonic density variation through diffraction techniques to 
measure the power along a line 

Since this research is based upon developing a clinical method utilizing the existing thermocouple 
information in a clinical hyperthermia situation, only thermal techniques can be utilized. Details 
of the original technique can be found in [41, 42] with more recent applications discussed in [43, 44, 
45, 46]. The relation between the absorbed power due to relaxation (as measured by the thermal 
techniques) and the acoustic pressure as calculated by the numerical models was put forth by 
Nyborg [47] as 

2 

< qv >= ^ (5) 
pc 

11 
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Figure 5: Power spectrum of the A-line data shown in figure 3 obtained using the spectrum call in 
MATLAB. 
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3    Numerical Methods 

Solution of the wave equation can be accomplished through many methods. Choice of the best 
solution method is dictated by many concerns including the dimension of the problem, extent 
of the medium, property variation within the medium and knowledge of the boundary conditions. 
When modeling ultrasound transmission through the diseased breast, especially a post-mastectomy 

breast, it will be important to use a solution method that will accurately track the reflections, 

refractions, and attenuation of the sound field. 
The acoustical wave equation, for variable properties and attenuation, in the frequency domain 

is derived in Appendix A. The derivation is presented here so that all the approximations and 
working assumptions are clearly identified. 

3.1     Green's Function 

One of the earliest methods used to solve for the pressure field from a transducer was a Green's 
function like solution for a homogeneous semi-infinite medium [48]. This solution method has 
been applied to spherical focused transducers [19, 49], and rectangular planar transducers [50] in 
homogeneous semi-infinite tissue medium. This method models the transducer face as a distribution 
of point sources. The field for each point source is determined from the free space Green's function 
solution of equation 19 with homogeneous properties in an infinite medium. Then the pressure 
field at any point in space is found by summing up the pressures from this distribution of point 
sources on the transducer. It is customary to work with the velocity potential [21], ty, for which 

the summation has the form, 

The pressure is then given by 

*W = f- / / vs—ds (6) 
2n J Js       r 

p(r) = /9— = ikZm (7) 

This solution is valid for semi-infinite homogeneous regions with constant properties. Atten- 
uation has been included in the previous models by multiplying the pressure by e~az where z is 
the depth into the attenuating medium and a is the attenuation coefficient [21]. This method 
has been extended to regions with variable properties in layered arrangement [51, 52]. Finally, 
some researchers have expressed the resulting power distribution by curve fitting a two-dimensional 
Gaussian equation to the solutions obtained by the previous methods [53, 54]. 

Experimental verification of these models has been done in vivo [55] and on non-tissue platforms 

[56]. 

3.2    Finite Element Method 

The solution of acoustic wave equation 24 can also be achieved by directly solving the governing 
partial differential equation through application of appropriate numerical techniques such as the 

13 
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Figure 6: One dimensional verification run on the two dimensional finite elements code to verify 
the accuracy of the code to model attenuation through the use of a complex wave number. 

finite element method. The solution can be developed utilizing any standard finite element method 
(for example, the Galerkin Method) since the wave equation is self-adjoint [57, 58]. The complex 
wave equation does possess one additional complexity not mentioned in the usual finite elements 
texts — the variables are complex numbers. This can be readily handled by most FORTRAN finite 
elements codes by simply making the variables complex since the FORTRAN language has the 
built in ability to handle complex numbers [59]. 

A two dimensional finite elements code has been written to solve equation 24. Verification 
runs are currently underway. As an example figure 6 shows a verification run of a one dimensional 
problem to verify the ability of the code to model attenuation through the use of a complex wave 

number. 

3.3    Inverse Techniques 

Inverse problems arise when the physical environment either severely limits or completely prohibits 
the direct measurement of the parameters necessary to uniquely determine a system's dependent 
variables. When using ultrasound hyperthermia to treat breast cancer the parameters of interest 
are the spatial distribution and values of:  1) tissue acoustical absorption, 2) attenuation, and 3) 

14 



acoustic impedance. The variable of interest is the absorbed power. If one knows all the parameters 
of a problem then it is possible to solve the "forward" problem for the dependent variables using 
the differential wave equation, equation 24. The inverse problem arises when one does not know the 
parameters but is able to measure some other property of the system, usually one of the variables. 
For ultrasound hyperthermia of breast cancer it is possible to pre-determine geometric regions of 
constant property (see section 2.1.1) and then measure on-line the value of the absorbed power (see 
section 2.2.2) at a limited number of internal points — the thermocouple junctions. 

The inverse technique developed for this research utilizes a standard inverse technique for non- 
linear problems [60] that is based on minimizing the error between the model estimated absorbed 
powers and the clinically measured absorbed powers. The minimization is accomplished by changing 
the value of the unknown parameters in the model until the "cost" function, 

<$>(e) = Yje}   Ct. = Qjneasured _ gmodeled (8) 

is minimized. This technique is also termed parameter estimation. The inverse process begins by 
assuming some value for the unknown parameters and solving the "forward" problem. The error 
between the model estimated dependent variables, or parameters, and the measured dependent 
variables and the resulting changes in absorbed power are given by the following linear approxima- 

tion: 
[J](A7) = (e) (9) 

The "Jacobian" matrix, J, is constructed from numerical simulations and is given by 

r    3Qi        9Qi 3Qi 
371 972 ' ' '       d-lNp 
dQi 9Q2 dQ2 

97i 972        ' ' '      97JVP J = 

dQNm        9QNm 9Qjym 

971 972 ■ ■ ■       dlNp 

(10) 

The inverse method utilized herein follows the following cycle of calculations in which the model 
parameters, 7, are updated according to equation 9 until there is negligible changes. 

1. Using the current values of model parameters, 7, calculate the Jacobian in equation 10 

2. Construct the error vector using the current values of model parameters, 7 

3. Invert equation 9 using singular value decomposition (SVD) to solve for changes in model 
parameters, 7 

4. Update model parameters 

5. Stop if the change in model parameters is small or the error, e, is acceptable 

15 



4 Conclusions 

The equipment and techniques necessary to perform the RF and temperture data acquisition needed 
for the inverse technique has been purchased and or fabricated. Two state of the art numerical 
solution techniques have been developed to solve for the pressure field in inhomogeneous tissue. 

5 Future Work 

5.1 Experimental Methods 

Evaluation of the various methods to estimate the tissue attenuation coefficient from the digitized 
RF data needs to be completed. This includes numerical simulations to determine the theoretical 
influence of noise, sampling rate, and digital signal processing techniques. For example, which 
power spectrum estimation technique provides the most accuracy. Additionally the effect of time 
gain compensation, dynamic focusing, and diffration need to be compensated for. 

The errors in using a clinical thermocouple probe to measure the absorbed power need to be 
quantified. If required, limited design modifications can be made to the clinical probe to improve 

the measurement accuracy. 

5.2 Numerical Methods 

The finite element and layered Green's function approach [52] need to be compared to determine 
relative accuracy and speed. The forward solver is at the heart of the inverse technique, and choise 

of the optimal forward solution algorithm is therefore essential. 

5.2.1     Combined Solution Algorithm 

The two solution algorithms (integral equation and differential equation) discussed above each 
possess positive and negative attributes when solving for any given problem. It is possible to 
optimally combine them in a hybrid solution method that utilizes the positive aspects of each 
method. The solution method to be developed herein will utilize the following scheme: 

1. Use the superposition method to propagate the sound field from the transducer surface to 
the tissue interface. Since the sound propagates from the transducer through a homogeneous 
medium it makes sense to use the simplest, fastest method for this region. This method then 
provides the complex pressures at the tissue boundary. 

2. Use the complex pressures from the superposition method as boundary conditions for the 
finite elements solution of equation 24. 

This solution method has the following additional (beyond those inherit in the finite elements 
solution and the superposition solution) assumptions: 
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1. There is no sound reflection or refraction at the water-tissue interface. 

2. Boundary conditions for the other tissue surfaces must be assumed-usually taken as zero. 

5.3    Inverse Techniques 

Since the unknown model parameters, 7, will have different units, equation 8 can be modified 
to normalize, or nondimensionalize, the error quantities. This may improve the stability of the 
inverse technique. It may also be possible to introduce some form of regularization when inverting 
equation 9. 
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A    Derivation of the Wave Equation 

The acoustic wave equation is derived from the equations of motion for a fluid as illustrated in 
figure 7. The first equation is conservation of mass, which states that the rate of change of density 
at a point is equal to the net mass flux from that point, 

-p(x,t) + V-(P(x,t)u) = 0 (11) 

The second equation is conservation of momentum, which states that the net force on a particle 
is equal the mass of the particle times its acceleration, 

pj|u + vp = 0 (12) 

Third we introduce the concept of linear acoustics. Simply stated this means that the dis- 
turbance produced by the sound wave to the ambient state is "small", and the total field can be 
considered as the ambient field plus a perturbation. 

P = Po + p' , P = Po + p' , u = u0 + u' (13) 

Forth we introduce a thermodynamic relationship between pressure and density that is valid for 
the cycle produced by the passing of the thermodynamic wave. This can be either an isentropic 
relationship or an isothermal one. For example in a liquid, this relationship is 

dp 
Po w- 

dp 
(14) 

Now we can use all the above relations to form the wave equation. First put the linear approxima- 
tions in equations 11 and 12. Expand these equations out and recall that the ambient field solves 
the conservation of mass equation and conservation of momentum equation equations exactly in 
a trivial sense since the ambient field is static. Then introduce equation 14 in what is left of the 
conservation of mass equation and equations 11 and 12 become, 

Ks(x)J^'(x,t) + V.uW) = 0 (15) 

po(x)-u'(x,i) + Vy(x,i) = 0 (16) 

In the discussion that follows, only the acoustic values of these variables remain (save for p0) and 
so for convenience sake the ' (prime) notation is dropped with the understanding that all variables 
are the acoustic values. The above two equations can be combined into one equation to form the 
wave equation which has the form, 

K,(x)^p(x,i) - V • (-i^Vp(x,0) = 0 (17) 
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Figure 7: Diagram of the Derivation Process 

Now a useful trick here is to Laplace transform equation 17 to remove the time derivative. We 
will not directly transform equation 17 but instead assume the pressure time relationship given by 

p = A(x)e-iwi (18) 

where Ä(x) is a complex pressure amplitude. One way to think about this transformation is that 
at each point x in the domain the pressure is oscillating at co radians/sec with an amplitude of 
Ä(x). Furthermore since A(x) is a complex number this means that the oscillations may be out of 
phase with each other. Equation 17 now becomes 

-^s(x)^(x)-v.(^vp(x; 

which can be rearranged as 

^V2p(x) - V • (^Vp(x) ) = 0 (19) 
/»(x) \MX) 

where k = u/c is the wave number. 
We can include the affects of attenuation due to absorption through an analogy to the one 

dimensional solution. First note that in a one dimensional homogeneous problem the attenuation 
is taken into account by multiplying the unattenuated pressure value by expax (see Pierce for a 
detailed derivation of this loss), where a is the attenuation coefficient in Nepers meter-1 . Recall, 
or review, that the plane wave solution can be written as 

p(x) = Aelkx (20) 
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where Ä is a complex magnitude that allows for an arbitrary phase offset. Note that the solution 
for the plane wave equation is accomplished without regard to boundary conditions. To account 
for attenuation of the wave we simply multiply the pressure by the exponential loss 

p(x) = Aeikxe~ax (21) 

Next we combine the exponentials and define a complex wave number, k, given as 

k = - + ia (22) 
c 

Then equation 21 can be written as 
p(x) = A/kx (23) 

The extension of the complex wave number to account for attenuation loss in three dimensions is 
straightforward and equation can be written as 

^V2p(x) - V • (^_Vp(x)) = 0 (24) 
P(x) Wx) / 
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